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1 Introduction and Motivation

Precision agriculture is a strategy that integrates Internet of Things (IoT) instruments in crop
management in order to improve the efficiency, the productivity, the quality and the sustainability of
agricultural production. In particular, food production systems need to optimize the usage of water,
energy and fertilizers, reduce pollution and soil degradation while maximizing the agricultural yields.
The impact of farming is extremely huge and agriculture faces several challenges. Natural resources
have to be monitored, due to their limits, farmers have to operate in sustainable boundaries, in order
to reduce the impact on the environment, the agriculture must be intensified to achieve food security
but has to remain sustainable. The first step to perform precision agriculture is the correct crop type
mapping of the different coltures.

In this framework, Earth Observation (EO) data represent a continuous and reliable source of
information to perform accurate crop type mapping and to objectively monitor agricultural areas at
large scale. Moreover, with the advent of European programs such as Copernicus, completely full, open
and free EO data are now available at global level. The data acquired can be used to train deep learning
classifiers, able to extract important statistics and analytic needed for the creation of productivity maps,
fertilizer application maps, and the definition of the optimal sewing date. Through EO data, large areas
can be constantly monitored, collecting a time series of multispectral images at high spatial resolution,
i.e. 10 m. In particular, Sentinel 2 allows the characterization of such phenological parameters of
different crop types due to their spectral properties and several multi-temporal radiometric indices
typically used to perform crop type classification. However, the analysis of such data requires the
definition of suitable architectures and processing techniques, able to exploit all the available temporal
information at a reasonable complexity. In this regard, deep learning becomes a powerful tool for
remote sensing imagery classification. Moreover, the classification of crop types is a complex scenario,
that requires the definition of a multi-temporal approach since cultivation change their spectral and
textural appearance according to their crop type growth cycle. Hence, each type of crop has its own
phenological characteristics and development time. However, the classification problem taken into
consideration brings several different challenges due to: (i) the cloud coverage which hampers the use
of several images in the Time Series (TS), (ii) the irregular temporal sampling at large scale since
the sensor acquires images at different dates over different regions, (iii) the spatial variability of the
spectral signature of the same crop, which may be very different in different locations, and (iv) the
imbalanced classification task since some crop types are cultivated extensively while many are poorly
represented from the statistical view point. Moreover, most of the pretrained deep learning model are
made up for the classification of single images or hyperspectral data. Only few deep learning methods
addressed the classication of long TSs of images, focusing on the temporal component. In this context,
a large reliable training set is required for the successful training of a multi-temporal deep learning
model from scratch.

2 Methodology

In order to deal with multitemporal agricultural datasets, all the images in the TS are required to
accurately represent the temporal trends of the crop types. The longer is the TS, the bigger is the
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Figure 1: Architecture of the proposed method for crop type mapping by using TSs of Sentinel 2 images and LSTM.

capability of the network to model the temporal dynamic [1]. However, while this is feasible when
working at a single tile-level, scaling to larger areas introduce several problems. The different TSs
may differ in terms of acquisition dates, acquisition length and satellite orbit. Moreover, the cloud
coverage severely hampers the TSs acquired, thus leading to irregular sampling of the study area. This
requires: (i) the harmonization of the TSs from the temporal view point, and (ii) the removal of the
cloud coverage in the scene. In particular, we generate monthly composite images, where each pixel
is generated by computing the band-wise median of the cloud-free multispectral pixels of the images
present in the short TS of images. The cloudy pixels present in the masks are removed from the
median calculation to strongly reduce the possibility of having cloud coverage present in the monthly
composite, thus removing high reflectance value that corrupts the spectral signature of the crops.

Then, the pre-processing of the considered thematic product is performed. The initial map legend
has been revised in order to define a classification scheme made of classes that can be discriminated
using the spectral and temporal information. Then, to increase the probability of selecting informative
and representative pixels, the border of the crops are eroded. This condition allows us to extract clean
pixels, avoiding those between neighboring crops characterized by a mixed spectral signature.

In order to successfully train a network from scratch, a large training set representative of the
considered study area is required. Nowadays, several crop type maps are available at country scale in
several European states due to the Common Agricultural Policy of the European Union. However, these
maps are based on farmers declarations and, although they provide an extreme amount of information,
they may contain (i) annual crop type declarations that do not match with the real cultivation due
to the rotation practice, and (ii) polygons which do not match exactly with purely spectral parcels.
Given the complexity of the problem, an automatic method able to extract reliable training samples in
an unsupervised way has been defined and the main workflow can be seen in Fig. 1. The methodology
adopted is based on three steps: (i) a stratified random sampling to generate a statistically balanced
initial weak training set, (ii) a LSTM trained with the weak training set to generate a preliminary crop
type map, and (iii) a reliable sample selection analysis to generate the final training set.

During the first stage, the prior probability of each crop type is extracted from the thematic product,
in order to obtain a statistically balanced initial training set. The number of samples extracted is
directly proportional to the total number of pixels associated to each crop type present in the analyzed
area. Due to the highly imbalanced prior probabilities in the problem considered, the classes are
initially split into two main categories (most-present and least present classes) defined by a threshold
computed automatically considering the statistical distribution of the crop types. To this end, the
considered threshold is computed at the 65th quantile of the prior probabilities. The computed prior
probabilities are then multiplied and summed by two user-defined constants to (i) guarantee a minimum
amount of samples per crop type, and (ii) mitigate the imbalanced classification task.

The initial weak training set is fed to the LSTM adopted in the proposed method. The model
generates a preliminary crop type map and a pixel-wise posterior map. The preliminary map obtained
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is compared with the original thematic products to detect crops associated to the same class in both
the maps. The pixel-wise posterior probability is used to quantify the confidence of the classificator for
each pixel. In particular, the last layer of the LSTM outputs the confidence level of the architecture
according to the softmax function, where the output is converted into a probability distribution
representing the predicted classes [2]. For each class, the samples located where both maps agree, i.e.
Mpred ∩ Mer, and having high confidence values are considered as possible candidates for the final
training set. In particular, for the uth class ωu, only the samples having confidence value higher than a
threshold computed as the 25th percentile of the posterior probabilities associated to pixels belonging
to ωu are considered. This criteria allows us to sharply increase the probability of selecting correctly
associated to their labels and with a pure spectral signature.

To fully exploit the seasonality of the target, we considered a multitemporal deep learning model
consisting in a multi-layer LSTM which provides classification result at pixel level. Since the classification
results benefit from an initialization of each layer with a different number of cells, the proposed LSTM is
composed by three layers of 200, 125 and 100 hidden units respectively, connected to a fully connected
layer whose output is fed to a softmax function. The architecture considers a cross-entropy loss function
between the predicted and the ground truth class, whose output value is a probability value between 0
and 1. The loss is backpropagated at each iterations through the network as gradients, which are then
used by RMSprop optimizer (a mini-batch version of rprop [3]). Taking into account the imbalanced
classification task which characterizes agricultural areas, the cross entropy loss function is changed
according to what presented in [4]. In particular, the final loss function can be rewritten as:

H ′ =

U∑
u=1

H ′
u =

U∑
u=1

nmax

nu
Hu (1)

where U is the total number of classes, nmax the number of samples associated to the dominant
class having the higher number of training samples, and nu the number of samples associated to the
uth class ωu. However, after modifying the cost function, the output represent only an approximation
of the a posteriori probability. For this reason, the network’s weights obtained by training the network
with the proposed loss function are reused as initial weights for the final training of the LSTM using
the standard multiclass entropy loss.

3 Experimental results and Conclusion

Different experiments have been carried out to (i) assess the effectiveness of the pre-processing step, (ii)
evaluate the need of training the deep learning model with a large training database extracted from the
whole study area, and (iii) compare the classification accuracy of the weighted LSTM with respect to
the state-of-the-art models. To assess the effectiveness of the proposed architecture, experiments have
been carried out in Austria in a study area having spatial extent of 3600km2. In order to accurately
model the phenological trends of the crops, the Sentinel 2 imagery employed range from September
2017 to August 2018, to represent an agronomic year. The data has been preprocessed in terms of
(i) atmospheric correction, and (ii) spatial interpolation of the 20m channels at 10m resolution. The
experiments have been carried out in three neighboring tiles, namely T33UUP, T33UVP, and T33UWP.
As expected, the different tiles selected have different TSs in order of length and acquisition dates
(T33UUP, T33UVP, and T33UWP have respectively 40,70, and 40 images).

To extract the training set, the publicly available 2018 Austrian crop type map [5] has been
considered. The defined legend of the Austrian crop type map has been deeply analyzed and aggregated
to select a set of crop types suitable for the task proposed. The final classification scheme is made up
of 15 classes, namely: “Legumes”, “Grassland”, “Maize”, “Potato”, “Sunflower”, “Soybean”, “Winter
Barley”, “Winter Caraway”, “Rapeseed”, “Winter Sugar Beet”, “Beet”, “Spring Barley”, “Winter
Wheat”, “Winter Triticale” and “Permanent Plantations”.

To perform the qualitative and the quantitative evaluation of the results obtained, we focus on
tile T33UVP, which is particularly interesting due to the heterogeneity of crops present in the scene
and the position on two overlapping orbits, allowing the acquisition of more images than the two
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Figure 2: Qualitative example of crop maps obtained for the tiles (i) 33UVP, (ii) 33UUP, and (iii) 33UWP The upper images
represents the original Sentinel 2 images in true colors, while the bottom images show the predicted maps.

neighboring tiles. To generate spatially and statistically independent training, the tiles have been split
into 100 non-overlapping patches, each assigned randomly to training set, test set, and validation set.
The choice of performing patch division extraction allow us to evaluate the capability of scaling at
large scale, using area spatially disjointed. The hyper-parameters of the network are selected according
to a standard grid search approach.

The first experiment aims to test the impact of the harmonization step on the classification results
by comparing the classification results obtained at local level, i.e., using only tile T33UVP. The deep
learning model adopted has been trained on (i) the whole TS of images, and (ii) the 12 monthly
composites. As expected, the training set obtained considering the monthly composite achieves a lower
classification accuracy compared to the one considering the whole TS of images. However, the OA and
the F1 are still comparable with the performance obtained using the whole TS. Hence, the monthly
composite approach is able to harmonize the different TSs of the neighboring tiles, allowing the (i)
extraction of training samples from the whole study area, (ii) usage of a single deep learning model for
the whole study area, and (iii) production of crop type maps at large scale.

After assessing the effectiveness of the harmonization step, in the second experiment we evaluated
the need of training the deep learning model using a large training database. We compare the
classification results on the T33UVP test set using a training set: (i) extracted only from the tile
T33UVP, (ii) extracted from T33UUP and T33UWP, and (iii) extracted from the whole study area.
Using the training set extracted from the whole area we achieve the highest accuracy. Table 1 shows
the results of each experiment conducted. In particular, the OA% and the F1% of the network trained
on the monthly composites considering the neighboring tiles are higher than the ones obtained using
the whole TS trained with the local training set. Moreover, the minor classes present in the scene are
better classified due to the introduction of training samples from the neighboring tiles. The qualitative
results of the weighted LSTM over the three tiles analyzed can be seen in Fig. 2.

In order to evaluate the performance of the weighted LSTM, the model has been compared with
recent multi- temporal state-of-the-art deep architecture used for crop type mapping. In particular,
we considered MSResNet [6], InceptionTime [7] and StarRNN [8]. Table 2 reports the accuracy of
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Table 1: Crop type classification results obtained on the test set of tile T33UVP. The Overall Accuracy (OA%), Producer Accuracy
(PA%), User Accuracy(UA%) and the Fscore (F1%) are reported for the LSTM trained on (i) the whole T33UVP TS of 70 images, (ii)
the 12 monthly composites TS of tile T33UVP, (iii) the 12 monthly composites of tiles T33UUP and T33UWP, and (iv) considering
the training set extracted using the monthly composites from each tile.

Training Set

TS of 70 images
(UVP)

TS of 12 composites
(UVP)

TS of 12 composites
(UUP UWP)

TS of 12 composites
(UVP UUP UWP)

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Legumes 66.96 81.79 73.64 58.09 61.35 59.68 53.77 52.98 53.37 66.07 76.59 70.94
Grassland 87.01 89.07 88.03 87.82 89.38 88.60 73.24 91.59 81.40 90.00 90.50 90.25
Maize 94.07 97.4 95.71 93.85 92.18 93.00 95.55 87.35 91.27 94.34 93.12 93.72
Potato 90.34 87.91 89.11 77.90 84.99 81.29 85.6 66.47 74.83 88.45 85.56 86.98
Sunflower 87.01 38.85 53.71 73.20 26.50 38.91 42.79 43.95 43.36 76.20 58.30 66.06
Soy 61.74 91.10 73.60 50.26 86.05 63.45 48.69 74.85 59.00 58.47 90.40 71.01
Winter Barley 80.54 91.17 85.76 80.43 91.50 85.61 70.02 85.85 77.13 80.87 93.85 86.87
Winter Caraway 90.92 75.65 82.58 93.96 76.35 84.24 89.82 27.80 42.45 94.01 86.40 90.04
Rapeseed 64.54 57.16 60.63 60.38 57.80 59.06 58.69 38.53 46.52 61.39 63.07 62.22
Winter Sugar Beet 88.69 96.50 92.43 93.18 97.80 95.43 71.25 97.90 82.47 91.92 99.00 95.32
Beet 83.98 97.67 90.30 80.04 96.90 87.67 80.71 95.52 87.50 88.57 96.17 92.21
Spring Cereals 82.60 76.94 79.67 80.71 72.49 76.38 73.65 66.09 69.66 84.13 77.34 80.59
Winter Wheat 83.08 80.32 81.68 81.19 84.50 82.81 90.75 69.72 78.86 87.30 83.75 85.49
Triticale 47.10 67.39 55.44 58.39 56.23 57.29 51.22 48.56 49.85 63.01 60.48 61.72
Perm. Plantations 92.19 56.74 70.25 81.39 61.04 69.76 61.57 49.65 54.97 82.01 70.47 75.80

OA% 83.23 80.89 66.18 84.54

Table 2: Crop type classication results obtained on tile T33UVP. The Overall Accuracy (OA%), and the Fscore (F1%) score are
reported for the baseline methods InceptionTime, MSResNet, StarRNN and the proposed weighted LSTM.

Baselines Proposed
Inc. Time MSResNet StarRNN LSTM

Prior% F1%

Legumes 3.1 58.66 75.62 71.76 70.94

Grassland 30.9 90.55 87.56 89.93 90.25

Maize 12.1 95.95 94.33 95.12 93.72

Potato 6.6 83.25 91.99 87.99 86.98

Sunflower 2.3 67.11 71.80 67.83 66.06

Soy 3.7 85.14 79.89 74.97 71.01

Winter Barley 3.9 74.47 90.92 86.95 86.87

Winter Caraway 1.6 88.46 92.09 87.64 90.04

Rapeseed 3.7 44.00 62.43 47.10 62.22

Winter Sugar Beet 3.7 97.52 93.82 97.48 95.32

Beet 3.6 89.10 96.53 90.59 92.21

Spring Cereals 7.7 73.45 77.84 80.19 80.59

Winter Wheat 5.1 76.44 84.75 82.25 85.49

Triticale 4.1 55.71 58.23 51.69 61.72

Perm. Plantations 7.4 80.87 59.98 78.78 75.80

OA% 82.35 84.48 83.97 84.54

the different architectures. The architectures have been trained on the three tiles analyzed and the
performance are evaluated on tile T33UVP. The LSTM outperformed the three baselines achieving an
OA% of 84.54. Moreover, the proposed LSTM achieved the best minimum F1% score (61.72%).

The results showed that the proposed method is able to: (i) harmonize optical data across different
tiles and mitigate the cloud coverage problem, (ii) extract automatically a large training database
representative of the different crops in the area, (iii) train a LSTM from scratch, and (iv) exploit
temporal and spectral properties of the TSs analyzed. We showed that the monthly composite approach
does not heavily affect the classification accuracy that can be obtained by using the whole TS of
images. Moreover, the loss of accuracy is balanced by the possibility of using a much larger training
set acquired over neighboring regions. In fact, using the whole training set, the model obtained an
OA% of 84.54%, outperforming the accuracy obtained with the whole TS of 70 images with a local
training set. Moreover, higher classification accuracy are achieved also on the minor classes compared
to the ones obtained on the whole TS of images with the local training set.
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